Dynamics of Posttranslational Modifications of p53
نویسندگان
چکیده
The latest experimental evidence indicates that acetylation of p53 at K164 (lysine 164) and K120 may induce directly cell apoptosis under severe DNA damage. However, previous cell apoptosis models only studied the effects of active and/or inactive p53, that is, phosphorylation/dephosphorylation of p53. In the present paper, based partly on Geva-Zatorsky et al. (2006) and Batchelor et al. (2008), we propose a new cell apoptosis network, in which p53 has three statuses, that is, unphosphorylated p53, phosphorylated p53, and acetylated p53. The time delay differential equations (DDEs) are formulated based on our network to investigate the dynamical insights of p53-induced cell apoptosis. In agreement with experiments (Loewer et al. (2010)), our simulations indicate that acetylated p53 accumulates gradually and then induces the proapoptotic protein Bax under enough DNA damage. Moreover, phosphorylated p53 oscillates and initiates cell repair during DNA damage.
منابع مشابه
Signaling to the p53 Tumor Suppressor through Pathways Activated by Genotoxic and Non-genotoxic Stresses
The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at -1 8 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 ...
متن کاملDynamics of p53: A Master Decider of Cell Fate
Cellular stress-induced temporal alterations-i.e., dynamics-are typically exemplified by the dynamics of p53 that serve as a master to determine cell fate. p53 dynamics were initially identified as the variations of p53 protein levels. However, a growing number of studies have shown that p53 dynamics are also manifested in variations in the activity, spatial location, and posttranslational ...
متن کاملE4F1 Is an Atypical Ubiquitin Ligase that Modulates p53 Effector Functions Independently of Degradation
p53 is regulated by multiple posttranslational modifications, including Hdm2-mediated ubiquitylation that drives its proteasomal degradation. Here, we identify the p53-associated factor E4F1, a ubiquitously expressed zinc-finger protein first identified as a cellular target of the viral oncoprotein E1A, as an atypical ubiquitin E3 ligase for p53 that modulates its effector functions without pro...
متن کاملTwo-phase dynamics of p53 in the DNA damage response.
The tumor suppressor p53 mainly induces cell cycle arrest/DNA repair or apoptosis in the DNA damage response. How to choose between these two outcomes is not fully understood. We proposed a four-module model of the p53 signaling network and associated the network dynamics with cellular outcomes after ionizing radiation. We found that the cellular response is mediated by both the level and postt...
متن کاملDistinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate
The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of cruc...
متن کاملp53-Mediated Transcriptional Activation From Test Tube to Cell
Posttranslational modifications of histones have been strongly correlated with transcriptional regulation. In this issue of Cell, comprehensively examined the nature of arginine methyltransferases and histone modifications in p53-mediated transcription.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014